
Technical Report, Intel Labs, 2010

A Fast Scanline Micro-Rasterization Kernel and its

Application to Soft Shadows

Sven Woop†

Intel Labs

Abstract

Many soft shadow algorithms approximate the visibility integral via sampling occlusion at many locations on the

light source. We present a fast micro-rasterization kernel to efficiently handle a grid of such sample locations

by micro-rasterizing triangular occluders onto planar lights. Our bit-parallel scanline algorithm iterates over

relevant scanlines and clears occluded samples using a small number of bit operations. We show that our algorithm

outperforms conventional software rasterization kernels by up to one order of magnitude for large triangles and

is similarly efficient for small triangles. We achieve a speedup of 2x in a soft shadow implementation.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional

Graphics and Realism—Visible line/surface algorithms

1. Introduction

Many illumination problems require the computation of vis-

ibility between points in space. For instance, the common

case of computing soft shadows of a small area light source

is a mainly a visibility integral as cosine factors can assumed

to be constant over the light. Recent work [BW09] proposed

multi frustum traversal to efficiently traverse the frustum

spanned by the receiver and the light and test the contained

geometry against a set of sample rays. Due to their efficient

frustum traversal method, the bottleneck in this method be-

came the ray/triangle intersection.

We present an occlusion kernel can be used in such a setup

to rasterize occluding triangles into small occlusion buffers.

As this operation is performed per pixel, we refer to it as

micro-rasterization similar to micro-rendering [REG∗09].

Our algorithm can in general be used for computing vis-

ibility between a point and a regular sampling pattern on

a surface. Besides soft shadows from planar light sources,

other potential areas of application are ambient occlusion,

anti-aliasing, and approximating visibility between hierar-

chy clusters, e.g. for hierarchical radiosity.

† sven.woop@intel.com

We present an efficient way of performing triangle setup

by slightly varying the approach of homogeneous rasteriza-

tion [OG97] by using Plücker tests. Our main contribution

is a scanline algorithm that leverages bit level parallelism to

efficiently compute a coverage mask of the triangle, by pro-

cessing all samples of one scanline in parallel. Therefore,

we occlude per scanline the range of pixels covered by the

triangle through a small number of bit operations.

2. Previous Work

The purpose of a rasterizer is to determine sample points that

are covered by a given triangle. This test is typically per-

formed in 2D by projecting geometry into an image plane

and testing the samples against the triangle edge equations.

The edge equations are computed after projection [Pin88]

or optionally before projection in 2D homogeneous coordi-

nates [OG97]. To speed up the computation, a conservative

set of candidate sample can be computed using hierarchi-

cal rasterization [Gre96,Sea08], screen tiling [Sea08], and/or

using the triangle screen bounding box.

Scanline algorithms [Bou70] operate on the frame buffer

scanline by scanline by managing a list of currently active

edges and processing the pixels between the start and end of



2 Sven Woop / A Fast Scanline Micro-Rasterization Kernel and its Application to Soft Shadows

the polygons. Bit operations are known in hardware imple-

mentations of scanline algorithms to compute triangle cov-

erage masks for anti aliasing [WKP∗97]. In contrast, we

show how to leverage software to gain similar efficiency and

demonstrate the application to soft shadow computations.

3. Setup in Homogeneous Space

For each pixel, we rasterize the triangles contained in the

frustum spanned by the primary hit location C and the light

source L. The light source is positioned at LP and spanned by

the vectors LS and LT . The point C is our projection center

and the light source L is our projection plane. A regular grid

of samples on the light source is given by L(s, t) = Lp + s ·

LS + t ·LT for integer locations of s and t.

As the projection center C varies per pixel, triangle setup

need to be performed per pixel as well. We minimize setup

costs by using a modification of homogeneous rasteriza-

tion [OG97]. Homogeneous rasterization avoids the perspec-

tive divide by computing edge equations in 2D homoge-

neous space, which avoids costly clipping operations for tri-

angles crossing the zero plane.

We first simplify the computation by moving the projec-

tion center from C to the zero point and the projection plane

from the light L to the z = 1 plane. We achieve this by trans-

forming the triangle vertices P0, P1, and P2 with the inverse

of the affine transformation Pi = (LS,LT ,LP−C) ·Vi +C into

a space with its origin at C and a coordinate system spanned

by LS, LT , and LP−C. After this geometric transform we ob-

tain post transformed triangle vertices V0, V1, and V2. Com-

puting this transformation requires a matrix inversion once

per pixel.

In the paper [OG97] the 2D homogeneous edge equations

are computed by taking the rows of the inverse of the ma-

trix (V0,V1,V2). We vary this approach, by using the Plücker

ray/triangle test [Eri97] and compute:

U = V1 ×V2 (1)

V = V2 ×V0 (2)

W = V0 ×V1 (3)

These vectors U ,V , and W are the rows of the adjoint matrix

of (V0,V1,V2), thus we are not computing the full inverse

which saves as some setup computations. We also compute

the determinant D = det(V0,V1,V2) = U ·V0 and discard tri-

angles that are back facing D ≤ 0.

We can now directly test if a homogeneous point (x,y,1)
on the projection plane is inside the triangle by testing if all

of the following u,v, or w are ≥ 0:

u = U · (x,y,1) (4)

v = V · (x,y,1) (5)

w = W · (x,y,1) (6)

To perform near/far clipping we compute additional clip

edges. In the Plücker test, the distance of the hit computes as

d = D/(u + v + w) and can be tested for a valid intersection

between the near and far clipping plane through near ≤ d

and d ≤ f ar. We introduce two new edge equations N =
(0,0,D)−near · (U +V +W ) and F = f ar · (U +V +W )−
(0,0,D) and compute:

n = N · (x,y,1) (7)

f = F · (x,y,1) (8)

This makes the hit test more consistent as the triangle is

now hit if all of the u, v, w, n, and f are ≥ 0. Note that for

a near clipping plane at 0, the clip edge can be discarded as

the edge got already tested through backface culling.

4. Bit-parallel Scanline Rasterization

We have derived a set of 5 edge equations that could be used

in a traditional rasterizer to test if the samples are covered

by the triangle. However, as we are not interersted in depth,

barycentric coordinates, etc. but only if we hit or not we

can perform scanline rasterization and do some additional

bit-level optimization that speeds up the computation signif-

icantly.

Instead of operating on single samples, scanline rasteri-

zation operates on scanlines by computing the interval of

covered samples per scanline (see Figure 1). By doing a few

more setup operations, we compute for each edge equation

the open interval where it is larger or equal than zero the

following way:

0 ≤ Ux · x+Uy · y+Uz (9)

x
Ux>0
≥ −

Uy

Ux
· y−

Uz

Ux
or x

Ux<0
< −

Uy

Ux
· y−

Uz

Ux
(10)

The location where the edge equation sign flips is either a

lower bound (for Ux > 0) or upper bound (for Ux < 0) of the

triangle. Using some min/max operations, we intersect these

lower and upper bounds of the different edge equations to get

the covered interval of the triangle with the current raster-

line. Unfortunately, being a lower or upper bound depends

on the sign of the x-component of an edge equation, making

A

B

C

b b

Figure 1: Scanline rasterization computes per scanline the

interval of pixels covered by the triangle. In this figure edges

A and B are upper bounds and edge C is a lower bound.



Sven Woop / A Fast Scanline Micro-Rasterization Kernel and its Application to Soft Shadows 3

different versions of the inner loop necessary to achieve best

performance.

We choose a 32x32 bit occlusion buffer for the discus-

sions in the rest of the paper. Our algorithm leverage bit

level parallelism to efficiently occlude the samples covered

by the triangle. We represent a scanline as a 32bit integer

which is initially set to all 1s and will at the end contain 0s

for occluded samples. We clear bits covered by the triangle

by computing a triangle coverage mask that is 1 outside the

triangle and 0 inside. For instance, for the scanline interval

[2.5,4.5], we first compute a bitvector with the bits 3 to 32

not set ...00000111 = not(−1 << 3) and one with bits 0 to 4

not set ...11100000 = (−2) << 4. Computing the logical or

of both bitvectors yields the desired triangle coverage mask

for the scanline.

While these bit operation principally work for all intervals

when long shifts are available, modern instruction sets han-

dle the shift amount modulo 32. We fix this issue by forcing

the lower bound to be ≥ 0 and the upper bound to be ≤ 31.

For similar reasons we need to ignore empty intervals by or-

ing the bitvector with the value −(lower > upper) which is

all 1s when the interval is empty and all 0s otherwise. As

an example, our innermost loop looks for Ux > 0, Vx > 0,

Nx > 0 (lower bounds) and Wx < 0, Fx < 0 (upper bounds)

like:

for (int y=y0; y<=y1; y++) {

lower = ceili(max(max(0,u),max(v,n)));

upper = floori(min(31,min(w,f)));

V[y] &= -int(lower > upper) |

~(-1«lower) | (-2«upper);

u+=U.y; v+=V.y; w+=W.y; n+=N.y; f+=F.y;

}

During setup, we also compute a conservative range

[y0,y1] of scanlines that need to get tested. To do so we per-

form the perspective division and compute the bounding of

y locations of the triangle points. Triangles that are partially

behind the zero plane complicate this bounding computation

and are rare, thus we conservatively iterate over all scanlines

of the micro raster in this case.

Unfortunately, there are some special cases left that need

to get adressed. If one of the edges is parallel to the x axis the

equation 10 is undefined as we divide by zero. We address

this issue in our implementation by setting the x component

of the edge equation to a small fraction of the y component in

this case. This makes the edge slightly misaligned and works

even if the y component is very small. If the x and y compo-

nents are both 0 the triangle lies on the z = 0 plane and can

be discarded. Handling these special cases puts more burden

on the setup stage but does not require any special handling

in the innermost loop. It further might result in small light

leaks.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 50 100 150 200 250 300 350 400

Bounds

Hierarchical

Scanline

small triangles large triangles

Figure 2: Cycles required to render triangles of different

number of occluded samples using three rasterization ker-

nels into a 32x32 occlusion buffer.

5. Results

We evaluate the algorithmic complexity of our kernel by

comparing execution times using an Intel R© Core
TM

2 Duo

CPU clocked at 2.26 GHz. We have not vectorized any ker-

nel to SSE instructions and are using single threaded code

compiled with ICC. Our near clipping plane is at 0 effec-

tively removing the near edge equation. We use a micro-

occlusion buffer of size 32x32 pixels and to simplify bound-

ing box computations we do not render triangles that cross

the zero plane in this comparison. We compare the following

rasterization kernels with each other:

• Bounds: Evaluates the edge equations for all samples in-

side the bounding box of the projected triangle.

• Hierarchical: Hierarchical Rasterization Algo-

rithm [Gre96] using homogeneous edge equations.

A two level hierarchy of 8x8 blocks of size 4x4

performed best.

• Scanline: The scanline algorithm described in this paper.

We have 16 different versions of the innermost loop as

described in Section 4.

Figure 2 shows the number of cycles required for raster-

izing triangles of different size. Triangle size is measured

in number of occluded samples. Our kernel outperforms all

other rasterization kernels for all triangle sizes by up to one

order of magnitude. Our kernel has a setup cost of 193 cycles

and required 17.2 cycles per iterated scanline. For large tri-

angles covering 400 samples we need 743 cycles to rasterize

one triangle into the 32x32 pixel occlusion buffer, which is

a throughput of 1.5 samples per cycle. For this workload the

hierarchical rasterization algorithm performs second with

12600 cycles, but we are still 17x faster. Our speedup can

be explained by our high fill rate due to clearing many sam-

ples per scanline at once. The bounding box kernel shows

to be very efficient for small triangles that cover only one

sample. However, with 142 cycles compared to 193 cycles



4 Sven Woop / A Fast Scanline Micro-Rasterization Kernel and its Application to Soft Shadows

(a) Quad (4 triangles) (b) Refinery (300k tris) (c) T-Rex (69k triangles) (d) Fern (212k triangles)

Figure 3: Scenes rendered with soft shadows at 1024x1024 pixel resolution and using a 32x32 pixel micro occlusion buffer.

we are only about 35% slower. We suffer in this case by our

higher setup cost through computing equation 10.

6. Application to Soft Shadows

To evaluate the micro-rasterization kernel with a realistic

workload, we implemented a simple soft shadow algorithm:

For every pixel, a frustum is traced from the primary hit lo-

cation to the light source by culling BVH nodes against the

frustum planes. All triangles inside the frustum are rasterized

into a 32x32 occlusion buffer using different raster kernels.

For axis aligned geometry the regularity of the sampling

pattern can reduce the quality of the shadow to a step func-

tion with 32 steps. We worked around this issue by misalign-

ing the sampling pattern (we rotate it slightly) and by shift-

ing the pattern per pixel. The first fix reduces the likelihood

of issues to occur and the second transforms artefacts into

into less objectionable noise. However, the noise will only

occur at locations where artefacts would occur otherwise.

As we setup a projection per pixel anyway, these fixes are

efficient to perform.

Quad Refinery T-Rex Fern

Bounds 4.0s 18.5s 9.5s 9.1s

Hierarchical 2.9s 15.1s 10.3s 16.7

Scanline 1.9s 6.7s 4.9s 5.7s

The above table shows the time required to traverse the

light source frusta and rasterizing the triangles. We do not

include the time required for computing primary visibility,

shading, or building datastructures. See Figure 5 for pictures

of the scenes. Our kernel speeds up the computation by about

a factor of two compared to the fastest of the other kernels.

The speedup is not higher as we also need to rasterize many

small triangles and suffer from our not optimal traversal ker-

nel that makes up 50% of the computation. An efficient frus-

tum traversal technique [BW09] would help to fix this issue.

7. Conclusions

We have demonstrated the strengths of software rendering

by designing an appropiate raster kernel for the particular

visibility problem arising in soft shadow computations. Our

fast scanline rasterization kernel uses bit level parallelism

to speed up the innermost loop by operating on complete

scanlines in parallel. We demonstrated that our kernel can

speed up the rendering of soft shadows by a factor of 2.

References

[Bou70] BOUKNIGHT W. J.: A procedure for generation of three-
dimensional half-toned computer graphics presentations. Com-

mun. ACM 13, 9 (1970), 527–536.

[BW09] BENTHIN C., WALD I.: Efficient ray traced soft shadows
using multi-frusta tracing. In HPG ’09: Proceedings of the Con-

ference on High Performance Graphics 2009 (New York, NY,
USA, 2009), ACM, pp. 135–144.

[Eri97] ERICKSON J.: Pluecker Coordinates. Ray Tracing

News (1997). http://www.acm.org/tog/resources/RTNews/html/-
rtnv10n3.html#art11.

[Gre96] GREENE N.: Hierarchical polygon tiling with coverage
masks. In SIGGRAPH ’96: Proceedings of the 23rd annual con-

ference on Computer graphics and interactive techniques (New
York, NY, USA, 1996), ACM, pp. 65–74.

[OG97] OLANO M., GREER T.: Triangle scan conversion us-
ing 2d homogeneous coordinates. In HWWS ’97: Proceedings of

the ACM SIGGRAPH/EUROGRAPHICS workshop on Graphics

hardware (New York, NY, USA, 1997), ACM, pp. 89–95.

[Pin88] PINEDA J.: A parallel algorithm for polygon rasteriza-
tion. In SIGGRAPH ’88: Proceedings of the 15th annual con-

ference on Computer graphics and interactive techniques (New
York, NY, USA, 1988), ACM, pp. 17–20.

[REG∗09] RITSCHEL T., ENGELHARDT T., GROSCH T., SEI-
DEL H.-P., KAUTZ J., DACHSBACHER C.: Micro-rendering for
scalable, parallel final gathering. In SIGGRAPH Asia ’09: ACM

SIGGRAPH Asia 2009 papers (New York, NY, USA, 2009),
ACM, pp. 1–8.

[Sea08] SEILER L., ET AL.: Larrabee: a many-core x86 architec-
ture for visual computing. In SIGGRAPH ’08: ACM SIGGRAPH

2008 papers (New York, NY, USA, 2008), ACM, pp. 1–15.

[WKP∗97] WINNER S., KELLEY M., PEASE B., RIVARD B.,
YEN A.: Hardware accelerated rendering of antialiasing us-
ing a modified a-buffer algorithm. In SIGGRAPH ’97: Pro-

ceedings of the 24th annual conference on Computer graphics

and interactive techniques (New York, NY, USA, 1997), ACM
Press/Addison-Wesley Publishing Co., pp. 307–316.


