
HWML: RTL/Structural Hardware Description using ML
Technical Report 2006

Sven Woop
Computer Graphics Lab

Saarland University
Germany

woop@cs.uni-sb.de

Erik Brunvand
Computer Science Department

University of Utah
USA

elb@cs.utah.edu

Philipp Slusallek
Computer Graphics Lab

Saarland University
Germany

slusallek@cs.uni-sb.de

Abstract

This paper describes how functional programming tech-
niques can be used to obtain simple, compact and highly
expressive hardware descriptions even for complex designs.
We use the functional programming language ML to de-
scribe the hardware structure of a system using a library
for basic circuit construction and transformation tasks. The
result is an RTL/structural description of the desired circuit
that is then easily optimized and mapped using conventional
synthesis tools. Using this library embedded in a functional
programming environment enables efficient high-level ab-
stractions such as higher order components, abstract poly-
morphic wires, data streams, automatic pipelining, multi-
ported memories, recursive structural definitions, and hier-
archy tagging for the resulting RTL/structural description.
These features combine to make a powerful and natural en-
vironment for describing hardware implementations.

We have used the HWML system in a large hardware
project and successfully implement a custom multi-threaded
graphics processor for ray tracing in about 4500 lines of
code. The resulting circuit has approximately four million
non-memory transistors and 2M bits of memory. On an
FPGA the circuit already delivers realtime graphics per-
formance and has also been mapped to ASIC standard cells
in a 130nm CMOS process.

1 Introduction

When choosing a set of hardware description tools, it
is important to find tools that balance the ease of system
description with the ability to achieve the desired perfor-
mance in the resulting system. Tools that describe behavior
at a very high level may not result in the best performing
systems, while tools that take a very low-level approach to
describing circuit structure (schematics, for example) may

not be suitable for describing large and complex systems.
For high-performance systems a designer often wants rel-
atively transparent control of the resulting implementation.
That is, changes to the high-level design description should
have understandable effects on the implementation and per-
formance. This argues for at least some control over the
structure of the circuit in the high-level description.

In this spirit we have developed the HWML system
(hardware meta language) based on functional program-
ming techniques in ML for describing an RTL/structural
view of a system rather than an abstract behavioral view.

This increases the transparency of the mapping from the
high-level description to the circuit, but still allows power-
ful high-level abstractions of the circuit structure. These ab-
stractions are at a higher level than are possible in standard
HDLs like VHDL and Verilog, but still describe structure
rather than pure behavior. The HWML description can be
simulated and debugged at a high level in the ML environ-
ment before moving to more detailed circuit-level simula-
tions. The result of compiling the HWML description is an
RTL/structural VHDL description that is easily mapped to a
target technology such as an FPGA or ASIC using standard
synthesis tools. The HWML system was developed during
the design of a complex multithreaded graphics processor
for ray tracing (the Ray Processing Unit (RPU) [7]), and
proved to be very suitable for describing this system.

Of course, leveraging an existing programming language
to describe hardware systems is not a new idea. Several
hardware description libraries for existing programming
languages have been developed. Some examples include:
System C [8] for C, JHDL [5] for Java, and Lava [4] for
Haskel. The capabilities of the mother language strongly
determines the style of describing the hardware using these
libraries. There are also some interesting extensions to
the industry standards VHDL and Verilog, such as Blue-
spec System Verilog [2]. Functional approaches to struc-
tural hardware description have been explored by many re-

1

searchers [9, 3] but examples of using these languages for
large complex systems are few. An advanced language for
functional structural hardware description is Lava [4]. Main
differences of our approach is, that we support automatic
pipelining of arbitrary non-cyclic circuits, and typed multi-
ported memories.

Because our project required a high-performance imple-
mentation, we chose to focus on a high-level structural de-
scriptive style. This paper describes how to perform high
level structural hardware abstractions using an ML library.
The focus of this paper is not only to describe a new func-
tional hardware description language, which we believe has
significant advantages over existing functional approaches,
but also to show the advantages of functional hardware de-
scription for large scale designs in practice through its use
in the design of a large and complex system. We believe
that by carefully choosing the abstractions, a structural de-
scription can be quite compact and as a consequence quite
readable and understandable by the designer.

The HWML hardware description library described in
this paper is a quite small basic library implementing func-
tionality like structural circuit construction, and support for
pipelining and simulation. It is implemented in the func-
tional programming language ML. We use the Moscow ML
dialect but mappings to different ML dialects should be triv-
ial. Some basic knowledge of ML programming is advanta-
geous to understanding some of the following sections. For
a brief introduction to ML see [6].

We used the abstraction concepts presented in this paper
to build a large scale ray tracing graphics processor. The
complete system has been implemented in about 4500 lines
of HWML code in about 6 man months concurrently with
the development of the HWML system. This shows that
compact and expressive HWML descriptions can result in
complex working hardware realizations.

The following sections of the paper describe the low
level structural library, and how that library is used to cre-
ate abstractions for automatic pipelining, abstract polymor-
phic wires, data streams, multiported memories, recursive
structural definitions, and hierarchy tagging for the resulting
RTL/structural description. We then describe the results of
using these techniques on the Ray Processing Unit (RPU).

2 Low Level Structural Library

On order to use ML as a hardware description language
we have created a basic library that supports the descrip-
tion of structural circuits. Our structural library implements
basic primitive Boolean functions such asAnd, Or, Not,
Mux and others to describe the structure of combinational
circuits. A delay functionReg introduces the possibility of
creating synchronous circuits using a register clocked by a
global clock signal. The introduction of registers also re-

quires the ability to build cyclic circuits. To make this pos-
sible in the ML framework one can create a fresh wire and
then assign a different wire to it later, thus closing the loop.

For the later inclusion of external components, such
as memories or highly optimized floating point units, an
atomicpipeline elementwith specified latency and a sim-
pleblack boxare also supported in the low level library. To
these elements one can give semantics for simulation by at-
taching some behavioral ML simulation code.

2.1 Circuit Creation

In order to understand how an ML program using the
library maps to a circuit we give a simple example.

fun reg_en en in =
let val out = Wire ()

val _ = Assign(out,Reg (Mux (en,out,in)))
in out end

This ML code defines a registerreg en with clock en-
able that gets a clock enable signalen as its first and a wire
in as its second argument. In order to construct a regis-
ter with clock enable out of a standard register we require
a loop, thus we first create a fresh wireout which will be
the output. Assigned to this wire is a register that clocks
the input to the output ifen is true or it holds the output if
en is false. From these simple lines of ML code the library
creates a graph representation whose nodes are labeled with
the names of the logical functions (not, and, or, mux, reg,
...). This has a very straightforward mapping from the ML
description to the hardware structure. The ML program is
simply executed by the ML system, and the library calls di-
rectly generate graph nodes with the corresponding label.

This graph representation can be written out to a VHDL
file containing behavioral statements for each combina-
tional library function, and instantiated components for
some special black boxes like memories. The resulting
VHDL code forreg en is:

architecture reg_en of reg_en is
signal w0,w1,w2,w3,w4: std_logic;

begin
w3 <= port1; w4 <= port0;
w2 <= ((not w3) and w0) or (w3 and w4);
reg_w1 : process (lclk) begin

if lclk’event and lclk = ’1’ then
w1 <= w2;

end if;
end process reg_w1;
w0 <= w1; port2 <= w0;

end reg_en;

Fine grained technology mapping into a specific target
library such as that for an FPGA or an ASIC standard cell li-
brary is done later by standard synthesis tools. Mapping for

large memory structures is done by our tool and results in
FPGA memory instantiations or specifications for an ASIC
memory compiler to generate black box memories.

2.2 Automatic Pipelining

The low level HWML library can introduce pipelining
into the circuit by taking a non-cyclic circuit, that may al-
ready contain pipeline elements, and creating a balanced
pipeline that is adjusted to a specified delay per pipeline
stage.

The pipelining algorithm is separated into three steps.

1. A simple constant propagation algorithm is applied
which replaces subgraphs that contain a constant wire
by its reduced form, like replacingAnd(x, 1) by x.
This optimization can reduce the depth of the circuit
and help prevent the algorithm from inserting too many
pipeline stages.

2. The depth to each of the cells in the circuit is com-
puted. All atomic cells (individual Boolean gates, for
example) have a specified delay. The depth of a node in
the graph representation is now defined as its own de-
lay plus the maximum of the depth of its input nodes.
By applying this definition recursively onto the circuit,
one can assign a depth to each graph node.

3. The algorithm now walks the graph and inserts
pipeline stages at depth0 · step, 1 · step, 2 · step, · · ·

until it reaches the maximum depth of the circuit. The
stepping size is set to the specified delay per pipeline
stage.

The automatic pipelining to a specified delay per
pipeline stage is an important function that enables the fol-
lowing abstractions to work more easily. Because the high
level abstractions view the circuit at the dataflow level, cir-
cuits may have varying latencies or may be described re-
cursively. Manually inserting register stages into a recur-
sively defined multiplier, for example, would be quite com-
plicated, as this type of modification does not map well to
the recursive definition scheme. Instead, the functions are
described using whatever HWML structures make sense,
and the pipeline registers are inserted automatically.

2.3 Simulation

The HWML library can perform a cycle accurate sim-
ulation of the generated graph representation. To feed the
simulation with data, an ML test bench applies stimuli to
the input wires in each cycle of the simulation. The library
propagates the circuit values in each cycle for the primitive
gates and calls user callback functions to simulate the be-
havior of the black boxes such as memories.

3 High Level Abstractions

Based on the low level functionality one can now use
the HWML framework to define higher level abstractions to
simplify the hardware description process. Besides the au-
tomatic pipelining, memory abstraction, and hierarchy tag-
ging, the techniques described in the following would also
be possible on top of Lava by using the functional capabili-
ties of Haskel.

3.1 Components as Functions

The first abstraction is to represent hardware components
by ML functions. Compared to standard structural compo-
nents this allows higher level semantics. Thus a function
can by polymorphic, which means it can implement differ-
ent structural behavior depending on the type of input wires,
as explained in the next section. The function arguments
and results do not necessarily correspond to input wires and
output wires. By passing a fresh wire to a function, it can
return a result to this argument wire by assigning a different
wire to it. Similarly one can use a result wire as input by
returning a fresh wire and already using it in the computa-
tions.

3.2 Abstract Wires

The low level library contains a wire typebit whose
usage is quite limited. Assume you like to multiplex a tuple
of two wires, then you have to build a special functionmux2
to select between both tuples.

fun mux2 sel ((a0,b0),(a1,b1)) =
(Mux sel (a0,b0), Mux sel (a1,b1))

For each type of wire you would need a separate mul-
tiplexer function to operate on it. A more elegant method
would be to have only a single function that automatically
chooses a different multiplexer based on the type of the
wire, which is called polymorphism. Such a function should
be useable on all wire types supported in HWML: bits, in-
teger wires, floating point wires, or combinations of them.
To make this possible we use the datatype construct of the
ML language and define our own wire datatype as follows:

datatype Wire =
B of bit boolean wire

| I of bit list integer wire
| F of bit*bit list*bit list floating point
| L of Wire list list of wires

This datatype specification can easily be extended for
special needs such as more general fixed point arithmetic.
This datatype defines a new type calledWire that can ei-
ther be a simple boolean wireB, an integer wire represented

by a bit listI, a floating point wireF consisting of the sign,
exponent and mantissa, and a listL of wires. The construc-
torsB,I,F, andL can be used to build abstract wires and
using ML pattern matching them can be decomposed again.

These abstract wires are internally similar handled as
VHDL bit vectors but for the hardware designer them con-
tain additional information about the structure and type of
the contained bits. Furthermore they allow to write poly-
morphic functions over this abstract wire datatype. For ex-
ample, the following multiplexer can multiplex arbitrary in-
puts of the same type.

fun mux (B sel) (B a, B b) =
B(Mux sel (a,b))

| mux (B sel) (I a, I b) =
I(map2 (Mux sel) (a,b))

| mux (B sel) (F(s0,e0,m0), F(s1,e1,m1)) =
F(Mux sel (s0,s1),

map2 (Mux sel) (e0,e1),
map2 (Mux sel) (m0,m1))

| mux sel (L a,L b)=L(map2 (mux sel) (a,b))
| mux _ _ = raise Error " ... "

This multiplexer function is a polymorphic function over
the wires that can select between tuples of arbitrary wires of
the same structure. There are four cases in the declaration,
one for boolean, integer, floating point and list of wires. The
map2 function call maps the multiplexer recursively onto
two lists of wires. If there is a structure mismatch in the
two wires the function fails with a runtime type error.

The ML language allows the programmer to define new
operators which, when used carefully, increases the read-
ability of the code. In the following the operatorA && B
will stand for logicaland, A || B for logicalor, A ++
B for addition, andA <- B for the assignment of wireB
to the fresh wireA. HWML defines a number of other op-
erators including multiplication but these are sufficient to
describe the concepts in the rest of the paper. All the oper-
ators are defined to be polymorphic over the supported data
types.

3.3 Stream Abstraction

A datastream is a basic concept of hardware architecture
defining data flowing along some paths in a data flow graph.
Communication schemes are often implemented using data-
streams. For example, a function call to a component could
consist of an input datastream for the argument and an out-
put datastream for the result of that function call.

A datastream that can hold arbitrary data can be ab-
stracted by a triple of three wires: a valid signal that in-
dicates if there is currently data on the stream, the data
itself, and a busy control signal that indicates the stream
should stop. The data on the stream can of course be of any
complex type, while the valid and busy signals must be of

boolean type. Note that the busy signal indicates that the
previous unit in the stream should stop thus its direction is
the opposite than the valid and data signals.

Using this stream abstraction, we can define functions
that operate on streams. For example, we can define a
stream statement to create a stream, an assign statement to
close a cyclic dataflow, stream multiplexers, a demultiplexer
that directs the datasteam to one of two output streams, fi-
fos, a stop statement to stop a datastream, a delay statement
to delay the stream element by one cycle, a semaphore that
only allowsn stream elements to be present on a region, a
merge statement that merges two streams, and a split state-
ment that splits a stream into two streams (the inverse of the
merge operation). Note that each of these operations can
work on streams that hold arbitrary data.

As a simple example we show here the implementation
of the merge operation that merges two streams into one.

fun merge (val0,data0,busy0)
(val1,data1,busy1) =

let
val busy = Wire TyB
val _ = busy0 <- val0 && not valid1 || busy
val _ = busy1 <- val1 && not valid0 || busy

in (val0 && val1,L[data0,data1],busy) end

This function takes a data element from stream 0 and
stream 1 and creates a new stream with those two data el-
ements combined together. Note that one input stream is
stopped if it contains data while there is no data on the other
stream or if the output stream is stopped. By combining the
high level stream modifiers HWML can generate each type
of control flow path at a very high level without dealing with
low level control automata.

Such a stream merge operation can be used, for instance,
if the two arguments for an addition are computed at an un-
known time. Then one can synchronize the input stream
of the first argument and the stream of the second argument
with a merge function and put the output stream to the adder.

fun stream_add (valid,L[a,b],busy) =
(valid,a ++ b,busy)

val sum_steam =
stream_add (merge stream0 stream1)

One can see here how well the function abstraction
works together with the stream abstraction. The input
streams (which consist of wires of different directions) are
given as the argument to a function and the resulting output
stream can then be processed further.

For debugging purposes one can pass special watch func-
tions to the low level library that are called after each clock
cycle. These functions can interpret the values on a stream

and e.g. print them to the standard output. Thus in de-
bugging one can easily follow the computation at arbitrary
points by adding a small watch statement to a stream.

3.4 Pipelines as Stream Elements

As values pass through a datapath they are often oper-
ated on by functions, like the addition in the previous exam-
ple. In general these computations might be quite complex
thus not be executable in a single cycle. But it is desirable
to write these combinational computations in an as abstract
form as possible without spending time to manually adjust
the circuit to an appropriate latency. Automatic pipelining
transforms combinational circuits into efficient pipelines by
using the automatic pipelining of the low level library ex-
tended with some streaming control.

The following example reads two vectors from the two
input streams and performs a dot product computation that
is pipelined to match a target frequency.

fun dot (L[L[x0,y0,z0],L[x1,y1,z1]]) =
(x0 ** x1 ++ y0 ** y1) ++ (z0 ** z1)

val out_steam =
pipeline dot (merge stream0 stream1)

The pipeline function transforms the pipelined result to
a stream by adding the valid and busy control signals to it.

3.5 Multiported Memory Abstraction

Nearly every hardware design needs memories in which
to store computation state. Often these memories also need
multiple ports for instance to implement main register files
that read multiple arguments per cycle. Such multiported
memories can be abstracted quite simply in our HWML
framework. One can define a function that creates a typed
memory with multiple ports and specified address and data
type. The ports of the memory are returned as functions,
that can be called to connect to the memory ports.

In the low level library, each port is represented by a
pipeline element of cycle latency 1 and can be used only
at one position in the circuit to avoid resource conflicts.
The basic library knows nothing about the semantics of the
memory, except the latency of the read and write ports, thus
it can pipeline circuits that contain memories.

For simulation one has to apply some behavioral seman-
tics to the memory components. This is done by providing
ML callback functions for each memory. This function will
be called during simulation to provide the behavior of that
memory.

To export a circuit containing memories the memory cre-
ation function also must be able to synthesize the abstract
memory to the atomic memories available in the target plat-
form. Depending on the available memories this might

mean that the memory needs to be split horizontally (reduce
data width), vertically (reduce address width) or duplicated
to emulate more ports. The valid atomic memories are then
created as black boxes in the low level library with some
circuitry around to connect them. As this synthesis step is
at a high level it is efficient and it is guaranteed that mem-
ory blocks of the target platform are really used. One might
export the same circuit description to a Xilinx FPGA tak-
ing efficient usage of the memory hierarchy available there,
to other FPGAs, or to an ASIC process by automatically
building memories using an appropriate memory compiler.

The advantages of our memory abstraction over the man-
ual use of structural atomar memory blocks of the target
platform (such as Xilinx block memories) is that we are
platform independent, as this mapping is performed auto-
matically. Futhermore the memory maintains the type of
the wire, reducing the possiblity for design errors. Some
synthesis tools support mapping behavioral VHDL mem-
ory descriptions to atomar memory blocks (such as the Xil-
inx synthesis tools), but only if the hardware designer uses
a strict coding style. Here again portability is an issue, as
a direct synthesis to an ASIC target platform (with its own
memory compiler tools) is not possible.

3.6 Recursion and Higher Level Functions

Recursive circuit descriptions play an important role if
designing arithmetic units. For instance a recursive parallel
prefix function is required to define a carry lookahead adder,
or a recursive balanced reduction operator to compute the
CRC checksum of a bit vector in logarithmic time. The
recursion must of course terminate at a statically determined
maximal depth as otherwise an infinite circuit is specified.
For example, a recursive definition of a reduction operator
that generates a balanced reduction tree over an arbitrary
reduction functionf, terminates if the length of its input
list reaches 1 after some recursive splits.

fun reduce f nil = raise Error "..."
| reduce f [x] = x
| reduce f lst =
let val left = take (lst,length lst / 2)

val right = drop (lst,length lst / 2)
in f(reduce f left,reduce f right) end

This function first splits the input list into two parts
of (nearly) equal length and applies the reduce operation
recursively on these parts. Then, the two sub-reductions
are combined with the functionf again. Note that the
reduce function is a higher order function that gets an
(associative) functionf as input. If we set this func-
tion to the xor operator the reduction computes the CRC
checksum of its input vector:val CRC = reduce xor
[B0(),B1(),B0(),B0()].

One can use the same reduction operation to sum a list of
integer wires for instance, by simply writingreduce add
[a,b,c,d]. Obviously, such an adder tree might have a
high delay so writing such a line seems of limited use. But,
as we support automatic pipelining one can simply create
such a tree and pipeline it later if that is what the designer
wants.

3.7 Hierarchy Tagging

For optimal automatic or manual placement on an ASIC
or FPGA a physical hierarchy of the design is very impor-
tant. A good hierarchy, required for physical layout, does
not always match the logical style in which a circuit is spec-
ified. We can introduce hierarchy to the structural circuit
by using the openingdown hierarchy name and clos-
ing up() functions, that can also be applied recursively.
All primitive components instantiated between these func-
tion calls are packed to the hierarchyhierarchy name.
Opening the same hierarchy again, one can always add ad-
ditional gates to it regardless of the HWML program hier-
archy. It is possible, for example, to define a new reduction
operator that packs together operations at the same level to
a hierarchy. Thus one can later place an arbitrary reduction
level by level to get an optimal placement.

4 Results

The HWML system was developed concurrently with
the development of a custom processor RPU for generating
computer graphic images using ray tracing [7]. As a result,
the design decisions for HWML were made in the context
of a large hardware project. Automatic pipelining, stream-
ing, bundled wires of complex types, and hierarchy tagging
were used extensively in the RPU design. Also, recursive
arithmetic unit definitions were used for the custom floating
point units.

4.1 Ray Processing Unit (RPU) Graphics Chip

Using HWML we have developed a complete multi-
threaded ray tracing processor (RPU), including four GPU-
like shading processors and dedicated hardware units for
fast traversal of rays through spatial index structures [7].
The RPU is a highly multithreaded, 4-way SIMD processor
with synchronous parallel execution of bundles of threads
for shading connected to a dedicated unit to perform ray
traversal. The memory connection uses several on-chip
caches for the scene information. The architecture is fully
programmable (except the custom traversal unit), and im-
plements a complete GPU processor instruction set with
additional support for recursion and fast shooting of rays.
The RPU is fully functional on an FPGA prototype, and

has also been targeted to an ASIC in a 130nm CMOS stan-
dard cell design for comparison. Ray tracing performance
achieved with the FPGA based prototype clocked at only
66 MHz is similar to that of traditional CPU based ray trac-
ing implementations even on modern multi-GHz CPUs [7].
The ASIC version would achieve about 16 times a single
PC CPU’s ray tracing performance if four RPUs were inte-
grated on a single chip. The size of a 4-RPU chip would be
around 121mm2 in a 130nm CMOS process.

As far as we know, this design is the first large scale
project that has been implemented exclusively with a func-
tional hardware description language. This approach made
it possible to implement the complete (single RPU) chip in
about 4500 lines of HWML code in about 6 man months
concurrent with the development of HWML. This shows
that compact and expressive hardware descriptions can be
created with the HWML functional abstractions.

The design is parameterizable to a large degree. By only
changing single configuration values of the HWML spec-
ification one can modify the number of threads supported
in the system, the number of threads contained in a syn-
chronous bundle, the computation accuracy (floating point
data path width, which also modifies data path widths, RF
size, etc.), the pipelining depth, and many more parame-
ters. These degrees of freedom allow design studies by try-
ing different configurations and testing them for efficiency,
or generating simple area estimates find a suitable configu-
ration. For example, the FPGA implementation is limited
to 24bit floating point precision by the limitations of the
specific Xilinx FPGA used whereas the ASIC version uses
32bit floating point.

The stream abstraction was used throughout the RPU de-
sign and was essential to the fast development of the system.
Rather than develop control automata directly, the stream
abstraction generated the control automata as a consequence
of the stream structures. Wire abstractions allowed much
more compact and readable code as complex wires are bun-
dled together and polymorphic structural elements automat-
ically adjust for the new wire types. Because we are target-
ing two very different technologies (FPGA and ASIC), the
memory abstraction that generates different memory struc-
tures based on the target was also essential.

The statistics of the FPGA and ASIC version of the com-
pleted RPU are:

FPGA Version: Implemented in a Xilinx Virtex-II
6000-4 FPGA [11] hosted on an Alpha Data ADM-XRC-II
PCI board [1]. The RPU uses the Xilinx FPGA to its lim-
its as 99% of all slices are occupied and 88% of the block
RAMs used. The design contains 48 24-bit floating point
units which use the available 18-bit block multipliers on the
FPGA, support for 128 hardware threads and 4 rays per syn-
chronous thread bundle. The FPGA runs at 66MHz typical
case.

Figure 1. The ASIC version of the RPU shown
with only four of the six levels of metal wiring.

ASIC Version: Implemented in 130nm CMOS using
a standard cell library from UMC [10]. A single RPU
(one traversal unit, four shading processors, plus memory)
is 5.5mm X 5.5mm and contains 48 32bit floating point
units, support for 128 hardware threads, and 4 rays per syn-
chronous thread bundle. The total design has approximately
4 million non-memory transistors and 2 million memory
bits distributed over 301 separate memory blocks. Post
place and route timing estimates for the current version are
150MHz worst case and 315MHz typical case which is 70%
of the maximum potential execution speed limited by the
speed of the memories.

4.2 Floating Point Unit Comparison

To evaluate the ability of HWML in describing de-
tailed structural components we designed our floating point
units in HWML and compared them to floating point units
synthesized using a commercial datapath synthesis tool,
both targeting the UMC 130nm standard cell library. The
HWML version leveraged the ability of HWML to describe
recursive hardware structure by first generating the partial
products, then sum them using a 3-to-2 adder tree, adding
the exponents and finally normalizing the result. For a
32-bit floating point multiplier, pipelined to a latency of
three cycles, the post place and route extracted timing for
both versions of the circuit are nearly identical 520 MHz
worst case. The HWML-generated version has a size of
108, 768 µm2 whereas the multiplier synthesized by the
commercial tool is slightly smaller at82, 311 µm2, most

likely due to that tool’s ability to use more complex cells
in its synthesis, but the comparison shows that even de-
tailed circuits compiled from HWML can be competitive
with those generated by commercial tools.

5 Conclusion

In this paper we describe a low level hardware descrip-
tion library for ML called HWML which enables a number
of high level abstractions and leverages a number of features
of the ML functional programming environment. These
powerful abstractions include automatic pipelining, abstract
polymorphic wires, data streams, multiported memories, re-
cursive structural definitions, and hierarchy tagging for the
resulting RTL/structural description. The result of compil-
ing the HWML description is collection of RTL/structural
VHDL files that can be mapped to a target technology us-
ing standard commercial synthesis tools. All these features
together allow us to write compact, expressive and reusable
code which results in high-performance circuit implemen-
tations. We have demonstrated the HWML design flow by
implementing a large scale graphics chip with these high
level abstraction techniques. The designer’s productivity is
increased using these abstractions, but the structure of the
circuit is always visible to the designer which leads to good
transparency of the design process and allows the designer
to make informed decisions about how to optimize the de-
sign.

References

[1] Alpha-Data. ADM-XRC-II. http://www.alphadata.uk.co,
2003.

[2] Bluespec. Bluespec webpage, http://www.bluespec.com.
[3] A. Mycroft and R. Sharp. A statically allocated parallelfunc-

tional language. InAutomata, Languages and Programming,
pages 37–48, 2000.

[4] Per Bjesse, Koen Claessen, Mary Sheeran, and Satnam
Singh. Lava: Hardware Design in Haskell. InICFP ’98
in Baltimore (Maryland, USA), 1998.

[5] Peter Bellows and Brad Hutchings. JHDL - an HDL for re-
configurable systems. InIEEE. Symposium on FPGAs for
Custom Computing Machines, pages 175–184. IEEE Com-
puter Society Press, 1998.

[6] Scott Smith. Introduction to the ML programming language,
www.cs.jhu.edu/ scott/cw/lectures/sml-intro.html.

[7] Sven Woop, Jörg Schmittler and Philipp Slusallek. RPU:A
Programmable Ray Processing Unit for Realtime Ray Trac-
ing. In SIGGRAPH 2005 Conference Proceedings, 2005.

[8] SystemC Community. SystemC, www.systemc.org.
[9] Tom Hawkins. Confluence tutorial and reference manual.

www.launchbird.com.
[10] United Microelectronics Corporation. http://www.umc.com,

2005.
[11] Xilinx. Virtex-II. http://www.xilinx.com, 2003.

