
HWML:
A Polymorphic Functional Hardware Description Library

for ML

Sven Woop and Philipp Slusallek
Technical Report, Computer Graphics Lab

Saarland University
Email: woop@cs.uni-sb.de slusallek@cs.uni-sb.de

Abstract

This paper describes HWML, a structural hardware de-
scription library for the functional programming lan-
guage ML. The usage of functional programming tech-
niques allows high level abstraction of the circuit struc-
ture. Components are denoted by ML functions which
allows to specify components recursively or to write
high level components that get components as argu-
ment or return components. Polymorphic components in
conjunction with abstract wires and typed multi-ported
memories are supported which increases reusability of
code. Automatic pipelining of non-cyclic circuits, that
might even contain memory reads and writes, abstracts
the computation flow graph from the cycle domain. For
concurrent usage of long latency pipelines, the pipeline
can by specified for a single thread and later be multi-
threaded automatically.

The library functions are optimized to the target plat-
form, such that block multipliers or block RAMs avail-
able in Xilinx FPGAs are used automatically for in-
stance.

These features all together make HWML a power-
ful library for hardware description that allows writing
compact and expressive code.

The essential interface functions to the HWML library
are explained and example code demonstrates the ad-
vantages of polymorphic and functional high level hard-
ware description.

1 Introduction

In 1965, Gordon Moore forecasted an exponential in-
crease of the number of transistors on a single die. In
parallel to this increase of complexity the tools to handle
the larger and larger amount of transistors have raised
their level of abstraction by providing higher level hard-
ware description languages (HDLs) and powerful tools
for hardware synthesis.

There are two main types of hardware description
languages using either a structural or a behavioral
approach. Structural hardware description languages
describe the connection between atomic components,
while behavioral languages describe the semantics of
the circuit. These behavioral languages abstract from
low level details as much as possible by mapping the se-
mantic description in a high level synthesis step to the
target platform.

Structural hardware descriptions using schematic en-
try approach has been a standard technology for a long
period. Later VHDL and Verilog put structural and be-
havioral description together into text based languages.
Both VHDL and Verilog are complex languages, require
attention to low level details, and lead to rather verbose
code with many lines for little functionality. Despite
these drawbacks they are well established HDLs in the
industry.

Functional aspects in hardware description provide
many advantages (see below) and have been analyzed by
many researchers [Tom Hawkins ; Mycroft and Sharp
2000; Per Bjesse, Koen Claessen, Mary Sheeran, and
Satnam Singh], but none of them supports polymor-
phism or multi-ported typed memories, which are essen-

tial for hardware designs. On the other hand, Viva [Star-
bridge] is a visual schematic entry tool that does support
polymorphism.

Several hardware description libraries for existing
programming languages have been developed, like:
System C [SystemC Community] for C, JHDL [Peter
Bellows and Brad Hutchings] for Java, and Lava [Per
Bjesse, Koen Claessen, Mary Sheeran, and Satnam
Singh] for Haskel.

Especially for FPGAs the availability of high level
hardware description languages is important to give the
designer the possibility to quickly develop, change, or
extent the design. Ideally, high level hardware descrip-
tion languages would allow for programming FPGAs
just as easily as writing and compiling parallel code for
a multi-processor system.

A language that allows this is Handel-C [Celoxica],
which is a reduced C dialect with parallel statements that
allows to write C code that is later compiled to a low
level hardware description. A more abstract behavioral
hardware description language is Mitrion-C [Mitrion].
The main difference to Handel-C is that the Mitrion-C
programmer has no cycle accurate control to the gener-
ated circuit, as the Mitrion-C compiler performs cycle
allocation and scheduling of the computation as well.
This makes hardware description principally as easy as
writing standard C code, but still the programmer needs
to have the hardware platform in mind, as the length
of its program is limited by the comparatively small
amount of hardware resources on its FPGA. Further-
more the programmer has hardly any control to the gen-
erated circuit, which makes hardware designer depen-
dent from the quality of the high level HDL compiler.

Behavioral hardware descriptions require less knowl-
edge about hardware design but often produce less ef-
ficient circuits. Pure behavioral hardware description
languages like Handel-C or Mitrion-C are not used for
large industrial projects, mainly because efficiency is of-
ten the motivating factor for a hardware design. Struc-
tural languages generally provide more options for opti-
mizing a hardware design.

In this paper we focus on the use of higher level ab-
stractions in structural hardware description based on
an implementation in the functional programming lan-
guage ML. The hardware meta library HWML com-
bines the ideas of polymorphic components, abstract
wires, and typed memories to a powerful functional pro-
gramming environment. High level operations on com-
ponents are supported, such as automatic pipelining and

multi-threading. Functional programming techniques
such as higher order functions (which lead to higher or-
der components) are very useful for abstract structural
hardware design.

The HWML library has been used in the SaarCOR
project [Jörg Schmittler, Sven Woop, and Philipp
Slusallek] for the design of special purpose ray trac-
ing hardware. This strongly multi-threaded ray trac-
ing processor [Sven Woop, Jörg Schmittler and Philipp
Slusallek] consists of four general-purpose shading pro-
cessors (SPUs) each operating on four-component float-
ing point or integer vectors. The SPUs are augmented
with four dedicated ray traversal units (TPUs) that allow
for fast traversal of rays through spatial index structures.
The architecture is fully programmable and implements
the typical processor instruction set of current graphics
hardware GPUs but extended to also support efficient
recursion and fast shooting of rays. Ray tracing perfor-
mance levels that can be achieved with an initial FPGA-
based prototype are up to 30 times faster than traditional
CPU based ray tracing implementations. The core SPU
processor has been implemented with the HWML li-
brary in about 1000 lines of code, which shows that effi-
cient, compact, and expressive code can be created with
HWML. HWML has also greatly improved the ability
to test and debug the hardware design.

2 Hardware Meta Library

Describing hardware with the hardware meta library
HWML works in two different levels: the first level is
defined by ML as the underlying language, and the sec-
ond level by the library itself. All ML statements are
executed directly by the ML system, while the HWML
library functions build an internal gate level graph struc-
ture, which can later be executed on an FPGA or by a
simulation.

Embedding the library into ML has the advantage,
that one can take advantage of all the powerful features
of ML, like higher order functions, pattern matching,
build-in lists, defining new operators, and so on. Knowl-
edge about ML programming is essential to understand
some of the following sections. For a brief introduction
to ML see [Scott Smith]. In our lab we use the Moscow
SML dialect [Kokholm and Sestoft] to test the library,
but a mapping to other ML implementation should be
trivial.

2.1 Abstract Wires

Typically hardware description libraries for functional
programming languages use the type system of the func-
tional language to type their wires. The advantage of
this concept is that static type checking can be used.
However, the disadvantage is that polymorphic func-
tions can not be supported, as the type system forbids
that. Even a separate register needs to be present for
each wire type like boolean wires or integer wires for
instance.

The HWML library goes a different way and defines
a single basic data typewire to represent wires of var-
ious type. Because each wire has the same ML type
wire, polymorphic function on various different types
of wires can be implemented in the library. An example
is a “register” function that can delay an arbitrary wire
by a single cycle. A drawback of this concept is that a
wire can no longer be statically type checked by the ML
system. This problem is solved by a dynamic runtime
type checking performed internally by the library, thus
adding an integer to a floating point value will cause an
exception to be raised for instance. The runtime type of
a wire can be accessed using thetyOf library function.

Wires can have a highly complex structure and a
unique runtime type is connected to each wire. The li-
brary works by connecting wires using library functions
and special operators to a circuit. Internally the library
breaks the high level operations down to the gate level
and represents the circuit in a graph labeled with atomic
gates likeand, or, not, mux, ...

The HWML library supports several basic types of
wires: boolean wires, integer wires with an arbitrary
number of bits and even floating point wires with ar-
bitrary precision. Using theL constructor nested hierar-
chical wires can be created, which can be used to create
tuples or lists of wires. The statementL[A,B] creates
a wire that is a tuple of two wiresA andB for instance.
There are functions to create constant wires, such as the
boolean constantsB0() andB1() or integer constants
mkI width value.

Wires are calledabstract wires in the follow-
ing, as their exact structure can remain unknown
for its connected component. Accessing the struc-
ture of such a wire is provided by pattern match-
ing, which is standard ML functionality. The state-
ment val L[L[x,y,z], ,L[a,b]] = A for instance
decomposes an arbitrary wireA, that consists of three
components, a three component vectorL[x,y,z], an

arbitrary part and a two component vectorL[a,b].
Subsequently, the variablesx,y,z,a,bare bound to the
specified sub-wires ofA.

2.2 Logical and Arithmetic Operations

ML supports functionality to introduce new operators to
the language. The HWML library uses this functional-
ity to define new operators to perform logical and arith-
metic operations on wires. Standard logical operations
such as negation (not A), logical and (A && B), logi-
cal or (A || B) and others are supported. Integers and
floating point wires can be compared to each other using
the compare operators for equality (A == B), inequality
(A != B), smaller than (A << B), greater than (A >> B)
and others. Multiplexing between arbitrary wires is sup-
ported and arithmetic operations such as addition (A ++

B), subtraction (A -- B) and multiplication (A ** B) of
two wires.

These library functions are optimized for the target
platform, such that block multipliers available in Xilinx
FPGAs are used by a multiplication if advantageous for
instance. This is possible by a special internal treatment
of the multiplication which causes a block multiplier to
be instantiated instead of synthesizing a gate netlist for
it.

All the operators are polymorphic, which means that
them can be applied to wires of different runtime type.
One can for instance add two integers together or two
matching tuples of integers. More general, the library
functions and operators operate recursively on the wires
and perform some scalar extension. For instance, let
a,b,c,d be boolean wires thenL[a,b] && L[c,d] is
the same as writingL[a && c,b && d] and the ex-
pressiona && L[c,d] is scalar extended toL[a &&

c,a && d]. This scheme is applied recursively to each
library operator and function. This polymorphism is in-
herited to functions build out of these library operators
and functions.

The main advantage of polymorphism is that the same
code can be used in several contexts, which increases
reusability. A problem that often happens with pipelined
designs is that some wires need to be by-passed by a
component, as them are only used by a later one in the
pipeline. This is easily possible in our approach, by
packing these wires to be by-passed to a single com-
plex wire and pass it through the component by taking
advantage of the polymorphic registers and memories.

Polymorphism together with higher order compo-

nents allows to implement a fold component that col-
lects stream items of different type, see Section 2.10.

The library further includes, functions to determine
the bit width of a wire, advanced mathematical opera-
tions on floating point wires like reciprocal and recipro-
cal square root, FIFOs, primuxes, and many more. Not
all of this functionality can be described here in detail.
Of course, existing ML libraries can be used as well, e.g.
to operate on ML lists, vectors, file systems, ...

2.3 Register Transfer Level

To this point, only combinatorial circuits could be cre-
ated with the library. But, the abstraction of clock cycles
is essential in hardware design thus supported by a reg-
ister reg A function that simply delays a wireA by a
single cycle. A registerreg en ce A with a clock en-
able signalce is also supported, as well as an n-cycles
delay linedelay n A or delay en ce n A.

2.4 Cyclic Circuits

Pure functional programming techniques would not be
sufficient to build circuits, as cyclic data types are nor-
mally not supported by them. ML contains besides func-
tional also imperative language constructs, like refer-
ences, that can be used to build a cyclic graph repre-
sentation of the circuit.

This allows to create cycles by using two special func-
tions. Thewire ty wire function creates a fresh wire
of the specified runtime type and the<- assign opera-
tor can later be used to connect a different wire to it.
This technique can be used to close a cycle as shown
in Figure 1. Synchronous and asynchronous cycles can
be created this way. The latter one will generate a warn-
ing during circuit export, because they are normally pro-
gramming errors and cannot be simulated.

2.5 Output Arguments and Input Results

A function always takes arguments and returns a result.
Wires in arguments of ML functions are mostly used as
input wires. Often it is usefull to return a value even to
an argument wire of a function. For instance, the full
signal of a fifo is read by the component writing to it,
thus a fifo might get an input stream, consisting of the
stream data and the full signal as argument. This full sig-
nal is going to the different direction as the data stream
itself, as it is computed by the fifo.

fun my_reg_en ce in =

let val out = wire (tyOf in)

val _ = out <- reg(mux(ce,out,in))

in out end

Figure 1: Register with clock enable build from a stan-
dard register using a back loop. If clock enable is false,
the current output value is selected and clocked again to
the output of the register.

This can be performed by using thewire and<- as-
sign statement to assign a wire to a fresh wire created
with thewire function. The other way around a result
of a component can also be an logical input for it, by
returning a fresh wire created with thewire function
which is later assigned, but can still be used in compu-
tations.

The next example compares two wires for inequality
by using a compare function that assigns the result to its
third argument. The call of the compare function returns
no value of interest, which is simply ignored by the
pattern.

fun not_equal (in0,in1) =

let

fun compare (a,b,out) =

out <- a == b

val eq = wire TyB

val _ = compare (in0,in1,eq)

in Not eq end

2.6 Runtime Type Casting

Internally HWML is strongly runtime typed requir-
ing a type cast to use the bits of a wire in differ-
ent ways. The expressionstatic cast ty wire A

casts a wireA to a runtime typety wire of the
same bit width by re-interpreting the bits ofA us-

ing the specified type. This type of cast is espe-
cially useful for decoding data read from external mem-
ory, like transforming a 32 bit integer into an RGBA
color: val L[r,g,b,a] = static cast (TyL[TyI

8, TyI 8, TyI 8, TyI 8]) int32.
The cast operationdynamic cast ty wire A con-

verts the value of the wireA to the specified type if
possible or raises an exception if the conversion makes
no sense. The following statement for instance con-
verts a floating point wire to an integer wire by re-
turning the integer part of the floating point value
float wire: val integer wire = dynamic cast

(TyI 32) float wire.

2.7 Typed Multi-ported Memories

A key feature of the HWML library is the possibility
to handle typed multi-ported memories by abstracting
the memory ports from the memory itself. Only pure
read and pure write ports are currently supported. De-
pending on the target platform multiple write ports may
cause problems, as on FPGAs for instance a memory
with 2 independent write ports and a read port can not
be created efficiently.

To create a memory, the designer specifies only the
read and write ports, the addressing mode, and the data
type of the memory and gets the corresponding memory
ports.

val [read0, read1,write0] =

mem "my_memory" [READ,READ,WRITE]

(TyI 2, TyL[TyI 8, TyI 8])

This example creates a memory namedmy memory,
with two read and a single write port which is addressed
by a 2 bit integer containing tuples of 8 bit integers.
The readable memory ports can be accessed by the
read port addr or read en port ce addr library
functions. Writable ports are accessible by thewrite

port (addr, din) or write en port we (addr,

din) function, which connects the specified wires to the
memory port.

val data0 = read read0 addr0

val L[da1,db1] = read read1 addr1

val _ = write_en write0

(B1()) (addr2,L[a,b])

When exporting a memory component, the library au-
tomatically compiles the memories to the correct atomic

memory units that are available on the target platform.
For Xilinx FPGAs this implies the use of block RAM
and select RAM available in those chips. For ASICs it
is necessary to invoke a memory compiler which gener-
ates the required memories for the used process.

2.8 Automatic Pipelining

Pipelining is a common concept to increase the maxi-
mum operating frequency of a circuit. If there is enough
parallelism in the mapped algorithm, pipelining may im-
prove operation speed dramatically.

The library supports automatic pipelining of compo-
nents that introduce no cycles, neither synchronous nor
asynchronous ones. As a special feature, memory read
and write accesses are allowed in the component to be
pipelined. The only limitation is that a write operation
must depend on a read operation to the same memory to
avoid conflicts in the case that the same address is being
used.

Two pipelining strategies are supported: pipeline to
a defined latency or pipeline to a globally specified fre-
quency. The fixed latency pipelining strategy is useful
if the control mechanism of the pipeline only supports a
fixed pipeline length. The algorithm tries to distribute
the circuit depth equally between the set of pipeline
stages, which may change the maximal operation fre-
quency.

The second strategy inserts registers to meet a certain
frequency. This requires a pipeline control mechanism
that supports arbitrary latencies as it may change when
varying the target frequency or the circuit. The pipelin-
ing function returns the pipelined component as well as
its latency, which can be used to adjust the control cir-
cuits when necessary.

Before pipelining a number of optimizations are per-
formed including constant propagation, which improves
the division into pipeline stages.

At this abstract stage of the hardware design pipelin-
ing can only take the gate netlist into account. This is not
perfect, as later synthesis tools might introduce differ-
ent atomic components (such as LUTs for FPGAs) with
timing properties unknown to HWML. Despite that, the
pipelining performed by HWML is the best possible at
this level of abstraction. Moreover, the HWML pipelin-
ing functionality is easy to use by simply applying a
pipelining statement to a component (see the next CPU
example).

Register re-balancing frequently available in lower

level synthesis tools are usually limited to a single level
of the hierarchy and often consumes significant synthe-
sis time. By providing a good initial pipelining synthe-
sis time is greatly reduced and we become more inde-
pendent from the quality of synthesis tools for the target
platform.

The following simple example shows the main part
of a very simple CPU, supporting an add and multiply
operation. Firstly, the instruction memoryIM and the
register fileRF are created. The following lines read
the instruction from the address specified by the pro-
gram counter (PC), access the register file, perform the
addition and multiplication in parallel, then select be-
tween both computations depending on the instruction,
and write the data back to the register file. The CPU is
then pipelined to latency of three and instantiated.

fun CPU pc =

let

(* create instruction memory *)

val [IM] = mem "IM" [READ]

(TyI 2, TyL[TyB, TyI 2,

TyI 2, TyI 2]]) nil

(* create register file *)

val [R0, R1, W0] =

mem "RF" [READ,READ,WRITE]

(TyI 2, TyF (7, 24)]) nil

(* cpu code starts here *)

val L[op, srcA, srcB, dst] = read IM pc

val A = read R0 srcA

val B = read R1 srcB

val AopB = mux(op, A ++ B, A ** B)

val _ = write_en W0 (B1()) (dst, AopB)

in

L[inc pc, AopB]

end

val CPU_piped = pipe_lat (CPU, 3)

val (valid,pc,busy) =

CPU_piped (valid, pc, busy)

As one sees, the pipelining adds avalid signal and
a busy signal to the component. The valid signal spec-
ifies if the input or output wires contain valid data in
the current cycle. Thebusy signals can be used to stall
the pipeline when necessary. See Figure 2 for a possible
pipelining result of the CPU.

Figure 2: A result of applying automatic pipelining to
the simple CPU. The incrementer is balanced to several
pipeline stages, and the busy signal (going from bottom
to top) is automatically connected negated to each clock
enable.

2.8.1 Multi-Threading

The pipelining algorithm has been extended to also per-
form multi-threading of the circuit for a more efficient
usage of pipeline resources. The pipeline is specified
only for a single thread of control. All data paths are
then augmented with a thread id and memories are repli-
cated and indexed by this id.

2.9 Recursive Circuit Description

Many arithmetic and logical units have a natural recur-
sive definition. Prime examples are: conditional sum
adders, carry lookahead adders, decoders, encoders, and
many more. Trying to define a parameterized version of
these components without support for recursion it quite
difficult.

For instance, recursively defining a decoder of arbi-
trary input width is easily possible, as shown by the next
example.

fun decode nil = [B1()]

| decode (x::xr) =

((not x) && (decode xr)) @

(x && (decode xr))

The decode function gets an integer as input that is
represented by a bit list. This bit list is processed from
the most significant bit to the least significant bit. The
decode component consists of two rules. The decoding

of an empty bit listnil is a list containing only the bit 1
trivially. If the list can be split into the most significant
bit x and a restxs, the list xs is decoded recursively.
Two of these decoded lists are concatenated together,
but one of both is tied to zero depending on the most
significant bit.

One sees the strength of recursive circuit description,
as even parameterized components such as our decoder
can mostly be specified in a few lines of code.

2.10 Higher Level Components

The concept of using functions as parameters for other
functions, or to return functions as the result of a func-
tion call is standard for functional programming lan-
guages like ML. In hardware description this technique
is very rarely used despite the fact that it can signifi-
cantly raise levels of abstractions. Many components
can be greatly simplified and provide a higher level com-
ponent by abstracting out some generic functionality.

Data streams play an important role in many hardware
designs, especially in signal processing. The follow-
ing example shows a polymorphic high level component
fold that can be used to implement various functions
that take a stream and return a single value computed
out of it.

This fold component gets an combinational binary
operatorf and a stream with control signalsfirst
(indicating the first stream element),last (indicating
the last stream element), the stream elementdin and a
valid signal that indicates that there is a valid stream
element in the current cycle. The fold component folds
the elements of the stream by the operator f, and is de-
fined by the following lines of code:

fun fold f (valid,first,last,din) =

let

val d’ = wire (tyOf din)

val _ = d’ <- reg_en valid

(mux(first,f(d’,din),din))

val valid’ = reg (valid && last)

in

(valid’,d’)

end

Let add be the functionfun add (a,b) = a ++ b

then we can instantiate a componentfold add that
computes the sum of its input stream. Asadd is a poly-
morphic function, thefold add component is poly-
morphic again, thus streams of arbitrary type such as

integer items or floating point items can be added. Of
course the fold component can be instantiated with
many different componentsf to compute various oper-
ations on the stream items. Of course, for each instanti-
ation a separate circuit is generated.

The example of folding a stream of items with an ar-
bitrary polymorphic operation shows the strength of the
HWML approach that significantly increases the possi-
ble levels of abstraction and code reuse.

2.11 Hierarchy

Despite the use of functions for representing compo-
nents, the HWML library has no access to this structure
of the circuit, as it is known only to the ML system. We
use extra statements to impose a hierarchy onto a cir-
cuit. This additional structure may be used later, e.g.
for applying synthesis constraints or performing manual
placement of components. Furthermore, the imposed
structure overcomes limitations in some vendor tools
that have problems with very large VHDL files and re-
quire subdivision of the circuit into smaller pieces. The
hierarchy also helps the library to provide meaningful
error messages.

The structure is defined hierarchically by using the
opening down name and the closingup() function
calls. The gates created between these two function calls
are labeled with the stringname and are placed in sep-
arate VHDL files when exporting the circuit. Thedown
andup functions can be nested to create a hierarchy.

With this mechanism the imposed component struc-
ture is independent from the logical structure of the
circuit. One can for instance simply subdivide a sin-
gle component into two hierarchy components for later
manual placement.

2.12 Simulation

Circuits created with the HWML library can be simu-
lated cycle accurately within the ML framework. The
simulate function of the library simply traverses the
in-memory circuit description repeatedly for each cycle
and performs any necessary computation and propaga-
tion of signals across wires. For simulation purposes
wires may also be connected to standard ML functions
for cycle accurate emulation of external components
such as DDR memories or a host controller.

Wires can be marked for debug output using the poly-
morphicinspect function. This function gets a wire,

a condition, and a string. The string together with the
state of the wire is printed in a human readable form for
each simulated cycle in which the condition evaluates to
true. For example, floating point wires are printed in the
usual floating point format instead of rather useless bit
patterns.

The library also contains a polymorphicrandom
function, that gets a runtime type and returns a random
wire value for fast statistical test vector creation.

2.13 Exporting Circuits

The HWML library has the capability to export the
netlist of a component to a VHDL file, for further pro-
cessing by external tools. If the component contains
some hierarchy created with thedown andup functions,
then several VHDL files are created according to this hi-
erarchy. Depending on the target platform, FPGA spe-
cific features such as block multipliers and block RAM
can be taken advantage of. On the other hand, if export-
ing to a ASIC platforms, these multipliers need to be
synthesized and an auxiliary script is generated for cre-
ating the required memories using a memory compiler.

3 Conclusion

In this paper we presented the hardware description
library HWML based on the functional programming
language ML. Compared to other hardware description
languages, the main advantages of the library are the
abstract wire construct together with the polymorphic
functions, and recursive and higher order components.

The embedding of the library into the powerful ML
programming framework allows for integrating power-
ful optimization techniques, simulation, and debugging
tools with the hardware description. The high level of
abstraction is supported by means for defining memories
of arbitrary address width and data type independent to
the underlying memory structures provided by the tar-
get platform. The concept of memory ports allows to
abstract from the details of the memory itself.

A powerful high level optimization technique is pro-
vided by automatic pipelining of non-cyclic components
with memory accesses. This approach abstracts the con-
trol flow of operations from the cycle domain. Further-
more, pipelines may be automatically multi-threaded by
replicating the memory for internal state and identifying
streamed data with a thread id.

The HWML library offers cycle accurate simulation
of the circuits, including a powerful conditional logging
from within the same environment for debugging pur-
poses.

In summary HWML provides a collection of tools
that even individually increase productivity of a hard-
ware designer. However, it is the combination of these
tools into a single tightly integrated environment that
leads to a unique set of features and capabilities that al-
low to write compact, expressive, and reusable hardware
descriptions, simulate them quickly, and export them di-
rectly to low level synthesis tools for FPGA and ASIC
chips.

4 References

CELOXICA. Handel-C language. www.celoxica.com.

JÖRG SCHMITTLER, SVEN WOOP, AND PHILIPP

SLUSALLEK . The SaarCOR realtime ray tracing
hardware project, www.saarcor.de.

KOKHOLM , S. R. C. R. N. J.,AND SESTOFT, P.
Moscow ML, www.dina.kvl.dk/ sestoft/mosml.html.

M ITRION. Mitrion-C, www.mitrion.com.

MYCROFT, A., AND SHARP, R. 2000. A statically
allocated parallel functional language. InAutomata,
Languages and Programming, 37–48.

PER BJESSE, KOEN CLAESSEN, MARY SHEERAN,
AND SATNAM SINGH. Lava: Hardware Design in
Haskell. InICFP ’98 in Baltimore (Maryland, USA),
1998.

PETER BELLOWS AND BRAD HUTCHINGS. JHDL -
an HDL for reconfigurable systems. InIEEE. Sym-
posium on FPGAs for Custom Computing Machines,
pages 175-184, Los Alamitos, CA, 1998, IEEE Com-
puter Society Press.

SCOTT SMITH . Introduction to the ML programming
language, www.cs.jhu.edu/ scott/cw/lectures/sml-
intro.html.

STARBRIDGE. Viva - The Ultimate Design Lan-
guage for Programming and Managing (FPGAs).
www.starbridgesystems.com/viva.htm.

SVEN WOOP, JÖRG SCHMITTLER AND PHILIPP

SLUSALLEK . RPU: A Programmable Ray Process-
ing Unit for Realtime Ray Tracing, to appear at SIG-
GRAPH 2005.

SYSTEMC COMMUNITY . SystemC, www.systemc.org.

TOM HAWKINS. Confluence tutorial and reference
manual. www.launchbird.com.

